Weak n-Ary Relational Products in Allegories
نویسندگان
چکیده
Abstract: Allegories are enriched categories generalizing a category of sets and binary relations. Accordingly, relational products in an allegory can be viewed as a generalization of Cartesian products. There are several definitions of relational products currently in the literature. Interestingly, definitions for binary products do not generalize easily to n-ary ones. In this paper, we provide a new definition of an n-ary relational product, and we examine its properties.
منابع مشابه
Final dialgebras: From categories to allegories
The study of inductive and coinductive types (like finite lists and streams, respectively) is usually conducted within the framework of category theory, which to all intents and purposes is a theory of sets and functions between sets. Allegory theory, an extension of category theory due to Freyd, is better suited to modelling relations between sets as opposed to functions between sets. The ques...
متن کاملComplements in Distributive Allegories
It is know in topos theory that axiom of choice implies that the topos is Boolean. In this paper we want to prove and generalize this result in the context of allegories. In particular, we will show that partial identities do have complements in distributive allegories with relational sums and total splittings assuming the axiom of choice. Furthermore, we will discuss possible modifications of ...
متن کاملNEW TYPES OF FUZZY n-ARY SUBHYPERGROUPS OF AN n-ARY HYPERGROUP
In this paper, the new notions of ``belongingness ($in_{gamma}$)"and ``quasi-coincidence ($q_delta$)" of a fuzzy point with a fuzzyset are introduced. By means of this new idea, the concept of$(alpha,beta)$-fuzzy $n$-ary subhypergroup of an $n$-aryhypergroup is given, where $alpha,betain{in_{gamma}, q_{delta},in_{gamma}wedge q_{delta}, ivq}$, andit is shown that, in 16 kinds of $(alpha,beta...
متن کاملThe n-adic first-order undefinability of the Geach formula
By adopting natural generalizations of relational frame and relational model we showed in [2] that the deontic law D, Dp -» Op, is not universally first-order definable. In effect, we showed there that for n > 2, there is no n-adic first-order sentence p such that for every n-ary frame F,F ^D iff F ^(3 in the first-order sense. The notion of n-ary frame and model employed there may be summarize...
متن کاملApplication of fundamental relations on n-ary polygroups
The class of $n$-ary polygroups is a certain subclass of $n$-ary hypergroups, a generalization of D{"o}rnte $n$-arygroups and a generalization of polygroups. The$beta^*$-relation and the $gamma^*$-relation are the smallestequivalence relations on an $n$-ary polygroup $P$ such that$P/beta^*$ and $P/gamma^*$ are an $n$-ary group and acommutative $n$-ary group, respectively. We use the $beta^*$-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Axioms
دوره 3 شماره
صفحات -
تاریخ انتشار 2014